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Abstract

Data corruption may arise from a wide variety of sources from aging
hardware to ionizing radiation, and the risk of corruption increases with
the computation scale. Corruptions may create failures, when execution
crashes; or they may be silent, when the corruption remains undetected.
I studied solutions to silent data corruptions for numerical integration
solvers, which are particularly sensitive to corruptions. Numerical inte-
gration solvers are step-by-step methods that approximate the solution of
a differential equation. Corruptions are not only propagated all along the
resolution, but the solution could even diverge.

In numerical integration solvers, approximation error can be estimated
at a low cost. I used these error estimates for detecting silent data cor-
ruptions in two high-performance applications in fault tolerance. On the
one hand, I demonstrated a new lightweight detector for solvers with a
fixed integration step size. I mathematically showed that all corruptions
affecting the accuracy of a simulation are detected by our method. On
the other hand, solvers with a variable integration size can naturally reject
silent data corruptions during the selection of the next integration size. I
showed that this mechanism alone can miss too many corruptions, and I
developed a mechanism to improve it.
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Abbreviations

AID Adaptive impact-driven which is an SDC detector developed by Di and
Cappello

BBDC BDF-based double-checking which is an SDC detector

BDF Backward differentiation formula

BSS14 SDC detector developed by Benson et al.

EDBC Extrapolation-based double-checking which is an SDC detector

FLOPS Floating-point operations par second

FPR False positive rate

GTE Global truncation error

LTE Local truncation error

ODE Ordinary differential equation

PDE Partial differential equation

SDC Silent data corruption

SFNR False negative rate with steps injected by a significant SDC
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VAID A variant of AID with a variable step-size

WRF Weather research and forecasting model
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1 Introduction

1.1 Application Scenario
The next step for high-performance computing is exascale computing. It at-
tempts to compute at least 1018 floating-point operations per second (FLOPS).
This technology has four main challenges: power consumption, memory storage,
networks, and resilience [1]. Resilience can be defined as the ability of a sys-
tem to cope with run-time errors. Sources of these errors are numerous, ranging
from electromagnetic interference [2] to hardware aging. Their consequences are
worrying: on the one hand, fail-stop failures conduct the execution to crash; on
the other hand, silent data corruptions (SDCs) corrupt the results without any
notification from the firmware or the operating system. Several reports [3, 4, 5]
highlight that many scientific applications already suffer from corruptions. Snir
et al. [6] showed that the situation is getting worse for exascale computers. The
frequency of errors will increase possibly by a factor of 1000.

SDCs can be detected with replication. Replication duplicates an execu-
tion, and compares results between both executions. If results differ, an SDC is
reported. But replication is limited by its overheads in memory and in compu-
tation, which are at least +100%.

Consequently, new solutions need to emerge to answer the challenge of re-
silience. In this report, I focus on numerical integration solvers. These solvers
provide an approximation of the solution of a differential equation in time steps
and discretized space. They are particularly sensitive to corruptions, because an
SDC, that occurs at a certain step, is progagated in following steps, and because
nonlinear problems with unstable dynamics tend to diverge in the presence of
a corruption. Some solvers are qualified of fixed, because their time step size is
fixed, whereas other solvers, qualified of adaptive, control their time step size
based on an estimation of the approximation error and user-defined tolerances.
Adaptive solvers are able to reject a step, when the approximation error appears
to exceed the tolerances.

Not all SDCs need to be detected. Because of the inherent approximation
error of a solver, some SDCs do not impact the accuracy of the results. At the
opposite, SDCs that impact the user accurary expectation are called significant.

Concerning fixed solvers, previous works [7, 8] attempt to compare a surro-
gate function to a threshold function at the end of a step. When the surrogate
function exceeds the threshold function, an SDC is reported, and the step is
recomputed. Because the surrogate function is based on curve-fitting meth-
ods, these SDC detectors are unlikely to detect SDCs that are higher than the
approximation error of the solver, and thus unlikely to detect significant SDCs.

Chen et al. [9] showed that the rejection mechanism for adaptive solvers can
reject some corruptions. But this mechanism is not reliable enough to reject all
significant SDCs.

1.2 Contributions and organizations
My solution for SDC detection in fixed solvers is to compare two estimates of
the approximation error of the solver. The two estimates are chosen such that
they agree only in the absence of corruptions. I mathematically and experi-
mentally showed that it allows to detect all significant SDCs. It improves the
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trustworthiness of the results while avoiding wasting of resources to recover from
insignificant SDCs. I performed experiments on a streamline integrator used for
the visualization of the weather research and forecasting model (WRF) [10].

In the presence of an SDC, the error estimate is also corrupted. I showed that
the error can be under-evaluated, and thus a significant SDC can be accepted
by a solver. I suggest to double-check the acceptance of a step with a second
error estimate. By using a second estimate with different terms, the probability
that both estimates are corrupted is significantly reduced. In my experiments,
the ratio of non-detected significant SDCs is reduced by a factor of 10.

Experiments were done in the context of high-performance computing by
considering parallelized applications.

The remainder of this paper is organized as follows. In Section 2, I present
the related works concerning resilience and numerical integration solvers. In
Section 3, I present our model of SDCs and the assumptions of our study. In
Section 4, I detail our SDC detector for fixed solver; in particular, I show that
it detects all significant SDCs, and I compare with state-of-the-art detectors.
In Section 5.2, I show that adaptive solvers are not able to reject all significant
SDCs, and I present how a second estimate can be selected to double-check the
acceptance of a step; then I test this mechanism on a cluster of 4096 cores.
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2 Related Work

This part presents related work on high-performance computing, numerical
solvers and fault tolerance.

2.1 Resilience in High-Performance Computing
The performance of a computer can be measured with the number of floating-
point operations per second (FLOPS). In 1996, Intel’s ASCI Red achieved the
teraFLOPS (1012 FLOPS). The first computer to go petascale (1015 FLOPS)
was IBM’s Roadrunner, which sustained performance of 1.026 petaFLOPS ac-
cording to the benchmark LINPACK [11].

High-performance computing works with multi-core processors: single pro-
cessing units (cores) are combined on a same component. Multi-core processors
can then be congregated into a node. Finally, nodes are put together in a rack.
Communication costs are higher at each level. Usually, communications are done
inside the message-passing interface standard (MPI) [12] which is implemented
in particular in MPICH [13] or MVAPICH [14].

For example, Argonne National Laboratory has the fifth more performant
computer in the world, MIRA. MIRA achieved a peak of 10 petaFLOPS with
its 786,432 cores, 49,152 nodes and 48 racks. However, its consums 3.9 MW.
If the exascale computing were reached by adding more processors to current
architectures, the power consumption might achieve 300 MW. New strategies to
detect SDCs must limit computational overheads to avoid an upsurge of power
consumption.

2.2 Numerical Integration Solver
Numerical integration solvers are used by a broad family of scientific appli-
cations, including engineering, physics, biology and economy. These solvers
approximate the integration of a differential equation. They are iterative, time-
stepping methods.

2.2.1 Differential equation

Numerical integration solvers attempt to approximate the solution of a differen-
tial equation. If the differential equation contains one independant variable, it
is called an ordinary differential equation (ODE), whereas with multiple inde-
pendant variables it is called a partial differential equation (PDE). A PDE may
be solved with the method of lines, where all but one variable is discretized.
In this case, the solution of a PDE is approximated by solving several ODEs.
We define an ODE method as the numerical method that solves an initial value
problem, formulated as

x0
(t) = f(t, x(t)), x(t

0

) = x
0

,

with t
0

2 R, x
0

2 R, x : R ! Rm, and f : R ⇥ Rm ! Rm; f is L-Lipschitz
continuous.

ODE methods approximate the exact solution of the ODE x(t
n

) into x
n

,
with n 2 1, ..., N , t

n

= t
0

+ nh, and h 2 R⇤
+

is the step size.
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2.2.2 Single-step and multi-step methods

Integration methods are often classified in two categories: single-step and multi-
step methods. Single-step methods compute several function evaluations be-
tween the current step and the previous step. At contrary, multi-step methods
depend on several previous steps, but they usually do not compute function
evaluations between two steps.

Most single-step methods belong to the Runge-Kutta family of methods, and
so are most of the methods employed in this study. Runge-Kutta methods can
be represented into a Butcher table, as in Table 1.

c
1

a
11

a
12

. . . a
1s

c
2

a
21

a
22

. . . a
2s

...
...

...
. . .

...
c
s

a
s1

a
s2

. . . a
ss

b
1

b
2

. . . b
s

Table 1. Butcher table of a single-step method

with s the number of stages (a
ij

) 2 Rˆs ⇥ Rˆs, (c
i

) 2 Rˆs, and (b
i

) 2 Rˆs.
Given the solution x

n

at tep n, the solution at the next step is approximated
in:

x
n+1

= x
n

+ h

sX

i=1

b
i

K
i

,

8i  s,K
i

= f

0

@t
n

+ c
i

h, x
n

+ h

i�1X

j=1

a
ij

f
n,j

1

A .

2.2.3 Implicit and explicit methods

ODE methods can be explicit or implicit. Explicit methods compute the step
n from previous steps, whereas implicit methods also use the current step n.
Implicit methods require solving a system of equations. This extracomputation
is worthwhile when implicit methods can use larger step sizes than explicit
methods. This is the case for stiff problems.

For example, the Butcher table of an explicit method has the following prop-
erty: a

i,j

= 0 if i � j. A classic implicit method is the backward Euler method:
x
n+1

= x
n

+ h
n+1

.f(t
n+1

, x
n+1

).

2.2.4 Function evaluations

ODE methods are composed of several terms that require a function evaluation.
We denote those terms (K

i

). For example, in explicit Runge-Kutta methods,
K

i

= f
⇣
t
n

+ c
i

h, x
n

+ h
P

i�1

j=1

a
ij

f
n,j

⌘
.

Function evaluations are the most computationally expensive part of a res-
olution. Therefore, SDCs are more likely to affect them.
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Figure 2. The local truncation error of the approximated solution is the blue interval.

2.2.5 Approximation error

Numerical solvers give nothing but an approximation of the solution of the
differential equation. They have an inherent approximation error, as illus-
trated in Figure 2. The local truncation error (LTE) is the approximation
error introduced at a step n + 1, whereas the global truncation error (GTE)
is the absolute difference between the exact solution x(t

n

) and the approx-
imated value x

n

. Given the step size h, an ODE method is said to have
an order p if LTE

n

= O(hp+1

), and the global truncation error (GTE) is
GTE

N

= O(hp

), where N is the last step. If u(t, n) is the solution of the
initial value problem: u0

(t, n) = f(t, u(t, n)), u(t
n

, n) = x
n

, then the LTE at
step n is LTE

n

= |x(t
n

)� u(t
n

, n� 1)|.

2.2.6 Estimation of the approximation error

Since the 60s, a rich literature has been developed to provide an estimation of
the approximation error.

For practical reasons, most of the solvers compute only an estimation of
the LTE. However, methods [15, 16] exist to estimate the GTE. We present
thereafter four methods for estimating the LTE. These methods are used in
following sections. They rely on the same idea. First, two approximations x

n

and x̃
n

of the solution are computed at different order p and q < p. Hence x̃
n

is supposed to be less accurate than x
n

. Secondly, the difference between these
two approximations is an estimation of less accurate approximation, x̃

n

. The
latter proposition is verified by:

x̃
n

� x
n

= x̃
n

� u(t
n

, n� 1)� (u(t
n

, n� 1)� x
n

) , (1)
= LTE[x̃]

n

� LTE[x]
n

, (2)
= LTE[x̃]

n

+O(hˆp). (3)

1. Embedded methods Embedded methods are the most widely used method
for estimating the error. These methods are designed to compute the two
approximated solution x

n

and x̃
n

from two ODE methods that share as
many as possible function evaluations. The solution is propagated by one
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of these results, while its (K
i

)

i

defined in 2.2.1 are reused to compute the
other result in order to achieve a low overhead.

2. Radau’s quadrature
Another way for estimating LTE is suggested by Stoller and Morrison
[17] and extended by Ceschino and Kuntzmann [18]. Relying on Radau’s
quadrature and Taylor’s expansion, Ceschino and Kuntzmann give an ex-
pression of the LTE of a method given its order p  5. The estimate
R, called here Radau’s estimate, does not require the computation of any
extra-stage, but it checkpoints previous stages and solutions. Therefore,
it has a memory overhead, rather than a computational overhead like the
embedded method. Since E is a sixth order estimatate, we use the follow-
ing estimate R presented by Butcher and Johnston [19]:

R =

h

10

[f(t
n�3

, x
n�3

) + 6f(t
n�2

, x
n�2

) + 3f(t
n�1

, x
n�1

)]

+

1

30

[10x
n�3

+ 9x
n�2

� 18x
n�1

� x
n

]

= LTEp

n

+O(hp+2

).

3. Richardson’s extrapolation
Richardson’s extrapolation can also be employed for estimating LTE. An
ODE method at order p is applied firstly t

n

to t
n

+ h/2 and then from
t
n

+ h/2 to t
n

+ h, providing a solution x̃
n

, and then from t
n

to t
n

+ h
providing the solution x

n

. As explained by Butcher [20], the estimation
LTE is deduced from:

(1� 2

�p

)

�1

�
˜x̃� x̃

�
. (4)

4. Backward Differentiation Formula To compute x̃
n

, one can also employ
a backward differentiation formula (BDF). BDF is a family of multistep
implicit methods. They can also be used directly to compute the estimates
by storing (x

n�k

)

k�0

. BDF methods achieve, at maximum, order 5. One
could also use an Adam-Moulton method: it requires storing f(t

n�k

, x
n�k

)

instead, which is often less practical.
Expressions of the backward differentiation formula can also be derived
for an adaptive solver at several orders. The two first formula are given
in [21]. For the first order:

x̃
n

= x
n�1

+ hf(x
n

).

For the second order:

x̃
n

= (1 + !
n

)

2/(1 + 2!)x
n�1

� !2

n

/(1 + 2!)x
n�2

+ hf(x
n

).

Guhur ARPE 2015-2016 11 of 43



Error Estimation for Fault Tolerance 15 juillet 2016

For the third order:

x̃
n

=

(w
n

+ 1)

2

(w
n�1

(w
n

+ 1) + 1)

2

(w
n�1

+ 1) (2w
n

+ w
n�1

(w
n

+ 1) (3w
n

+ 1) + 1)

x
n�1

� w2

n

(w
n�1

(w
n

+ 1) + 1)

2

2w
n

+ w
n�1

(w
n

+ 1) (3w
n

+ 1) + 1

x
n�2

+

w2

n

(w
n

+ 1)

2w3

n�1

(w
n�1

+ 1) (2w
n

+ w
n�1

(w
n

+ 1) (3w
n

+ 1) + 1)

x
n�3

+ h
n

(w
n

+ 1) (w
n

w
n�1

+ w
n�1

+ 1)

3w
n�1

w2

n

+ 4w
n�1

w
n

+ 2w
n

+ w
n�1

+ 1

f (x
n

) ,

where !
n

=

hn
hn�1

and !
n�1

=

hn�2

hn�1
.

The BDF method computes an approximated solution x̃
n

. The LEE is
obtained from the difference x

n

� x̃
n

. By employing previous solutions
(x

n�k

)

k.0

and current solution x
n

computing by the ODE method, BDF
requires only the computation of f(x

n

). For most ODE methods, however,
f(x

n

) is used for the next step. In this case, there is no extracomputation
when the step is accepted. Certain ODE methods called first-same-at-last
already compute f(x

n

) at step n.

2.2.7 Adaptive solvers

Users can control the approximation error by selecting a step size or an ODE
method that achieves their expectation. The choice is a difficult trade-off, be-
cause it is also directed by the unstability of the problem and by the execution
time expectations. Indeed, the step size cannot exceed a certain region of sta-
bility, which depends on the function f and the employed ODE method.

Adaptive solvers aim at choosing the step size at each step according to user-
defined tolerances. In details, adaptive solvers estimate the LTE or the GTE
at the end of a step. Then, the step size is reduced when the error estimate is
close to the tolerance, and it is increased when the error estimate is far from the
tolerance. If the error estimate exceeds the tolerance, the step size is rejected.

Figure 3 shows the relevance of adaptive solvers. A differential equation
proposed by Kulikov [15] is solved by an adaptive solver and a fixed solver with
the same accuracy. The adaptive solver used only 156 steps, whereas the fixed
solver used 250 steps.

1. Design of Adaptive Solvers
The user typically provides a desired absolute error tolerance Tol

A

or
a relative error tolerance Tol

R

. In practice, the error estimate is based
on LTE, so for every step the algorithm verifies that the estimated local
truncation error satisfies the tolerances provided by the user and suggests a
new step size to be taken. For Runge-Kutta methods, the LTE is obtained
from an approximation of the solution. The method to compute this
approximation is chosen in order to save computation or memory.
The adaptive controller at step n forms the acceptable error level and
scaled level as
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(a) Adaptive solver (b) Fixed solver

Figure 3. A differential equation is approximated with the same accuracy with an adaptive
solver and a fixed solver.

Err
n

= Tol

A

+ ||x
n

||Tol
R

,

SErr
n

= m
1
q

����
|x

n

� x̃
n

|
Err

n

����
q

,

where the errors are computed componentwise, m is the dimension of x,
and q is typically 2 or 1 (max norm). The error tolerances are satisfied
when SErr

k

 1.0.

2. Estimating the local error truncation
Several LEEs can be employed for adaptive solvers. Usually, LEEs sub-
stract x

n

with an approximation of it, x̃
n

, as explained in Equation (3).
Although estimates based on Richardson’s extrapolation can be employed
[22], the estimation is generally based on an embedded method. Embedded
methods compute at each step two results at two different orders p and q:
xp

n

and xq

n

(in general |q � p| = 1). The solution is propagated by one of
these results, while the second result provides the approximation x̃

n

that
is used to compute an LEE at step n. If q is at a higher order than LTEp,
then the difference between xp

n

and xq

n

is an LEE of xp

n

:

xp

n

� xq

n

= LTE[xp

]

n

� LTE[xq

]

n

(5)
= LTE[xp

]

n

+O(hq+1

). (6)

3. Control of error estimation
Based on this error estimate, in practice the step size that would satisfy
the tolerances is

h
new

(t
n

) = h
old

(t
n

)min(↵
max

,max(↵
min

, A
n+1

)) , (7)

A
n+1

= ↵(1/SErr
n+1

)

1
bp+1 ,
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where ↵
min

and ↵
max

keep the change in h to within a certain factor.
↵ < 1 is chosen so that there is some margin for which the tolerances are
satisfied and so that the probability of rejection is decreased.
In this study we use the following settings: ↵ = 0.9, ↵

max

= 10, ↵
min

= 0.1

and q = 2. Therefore, the scaled error is SErr =

q
1

n

P
n

|x�x̃|2
Err

2 , and the
step size is adjusted as h

new

= h
old

min(10,max(0.1, 0.9A
n+1

)).

4. Scheme of an adaptive controller
The adaptive controller works in the following way. After completing step
n, if SErr

n

 1.0, then the step is accepted, and the next step is modified
according to (7); otherwise the step is rejected and retaken with the step
length computed in (7).
Numerical integration solvers have an inherent approximation error de-
pending on the integration method and its order p: the GTE is O(hp

).
Because some low-order bits can be flipped without impacting a result,
SDCs that affect those bits are called insignificant. Other SDCs affect
higher-order bits: they increase the error and hence affect the user’s ac-
curacy requirement, or they may even cause the solver to diverge. Those
are referred to as significant.

2.3 Resilience to SDCs

2.3.1 Generic solutions

The most generic solution for achieving the resilience to SDCs is replication
[23]. It is implemented in RedMPI [24] (stands for redundant MPI), a recent
variant of MPI. SDC detection is achieved by comparing results between an
execution and its duplication. Correction can be obtained by using a variant
called triple-modular redundancy [25]. In these cases, the overheads in memory
and in computation are +200%.

At the hardware level, error-correcting code memory [26] consists in adding
extra-memory bits and memory controller to verify and to correct SDCs. It
makes memory, caches, and registers immune to SDCs.

2.3.2 Algorithmic resilience

At a higher level, resilience can be achieved by using algorithm properties. For
example, Huang and Abraham [27] developed algorithm-based fault tolerance in
the context of linear algebra. Several works have highlighted inherent resilient
properties inside algorithms. For example, Pauli et al. [28] showed that even in
presence of the nonrecoverable samples, Monte Carlo methods can still converge;
and the authors provided recommendations to enhance resilience.

2.3.3 Fixed numerical integration solvers

In the context of fixed numerical integration solvers, several methods extract a
surrogate function S and compare S to a threshold function T . The step is
validated when |S | < T .

The adaptive impact-driven detector (AID) [7] developed by Di and Cappello
has been applied to numerical integration solvers, but it can be designed to any
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iterative, time-stepping methods. S is the difference between results at step
n and a prediction of these results. If the results are too large to be stored, a
sampling is done [29]. The prediction is obtained by an extrapolation method:
the last value, a linear extrapolation, or a quadratic extrapolation. The method
selected to the one that minimizes the error of extrapolation or the memory cost
at a certain step, but the selection is often recomputed. T is computed from
the number of false positives, the maximum error of extrapolation, and a user-
defined bound upon which an SDC is considered as inacceptable. Benson et al.
developed an SDC detector [8] called BSS14. It computes an estimate of the
approximation error based on an embedded method [30], Richardson estimate,
linear extrapolation, or other specific estimates. S is related to a relative
difference to the last validated estimate and a ratio of the variance of previous
estimates. T is initialized by the user, but its values for each component are
updated each time a step is accepted. Five parameters need to be set by the
user. BSS14 and AID rely on extrapolation. Although extrapolation is easy to
compute, it assumes a certain smoothness in the results. This is not always the
case, especially for stiff problems.

For these SDC detectors, correction can be achieved with a rollback to the
previous step. However, this requires to store this step.

2.3.4 Consequences of SDCs in Numerical Integration Solvers

Numerical integration solvers are particularly sensitive to SDCs: because of
the iterative scheme, an SDC affects not only the corrupted step but also the
following steps. We illustrate this sensitivity with two examples.

• In nonlinear ODEs, the stability region of the ODE method depends on the
current step. An SDC can bring the solution outside the stability region.
For example, in the equation dx

dt

= (x� 1)

2, an initial point greater than
1 diverges to infinity, while an initial point less than 1 converges to 1.

• Even though the corruption is silent in the solver, it can produce corrupted
results in the next stages of the application’s workflow. For example, in
image processing, feature extraction can be based on solving a PDE as
shown by Zhou et al. [31]. If the PDE solution is incorrect, the iterative
process of level set evolution may not converge.

2.4 SDC Injector
Recent papers on SDC detections propose different ways to inject SDCs.

In several papers [29, 32] injection were done by flipping randomly bits. In
Guhur et al. [33], we compared several probability distributions to choose the
position of the bit-flip. In the following, we refer to these kinds of injections
by singlebit injections when one bit is flipped inside a data item, or multibit
injections when several bits are flipped. The number of bit-flips in multibit
injections is drawn from a uniform distribution.

A bit-flip on lowest-order positions may not have an impact on the results,
while a bit-flip in highest-order positions may crash the application or be easy
to detect. Consequently, Benson et al. [8] simulated SDC injections by multi-
plying a data item with a random factor. The factor is drawn from a normal
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distribution with zero mean and unit variance. We refer to this method as scaled
injections.

But some SDC may still have no impact on the results. One can also inject
only significant singlebit corruptions. In the context of numerical integration
solver, an SDC is considered as significant, when the difference between the
corrupted result x

n

ˆc and the uncorrupted result xo

n

is higher than a tenth of
the approximation error: |x

n

ˆc� x
n

ˆo| < LTE
n

/10
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3 Model and Assumptions

3.1 Silent Data Corruption Model
A corruption is more likely to occur in data than in instructions, because in-
structions occupy less memory than data do. Moreover, corrupted instructions
typically result in crashes and not silent corruptions. Other mechanisms besides
SDC detection, such as checkpointings, may be employed for protecting an exe-
cution against instruction corruptions. We assume here that corruptions affect
only data.

An SDC is called nonsystematic when it affects a program randomly. Such
SDCs typically are triggered when radiation or aging hardware flips a bit. The
probability of such SDCs is low and is unlikely to occur two times consecutively
in the same step on the same data and the same bits. Therefore, recomputing
a corrupted step to recover from a nonsystematic SDC is appropriate. On the
contrary, a systematic corruption is triggered by a repeatable pattern such as a
bug. In this study, we consider only nonsystematic SDCs.

We model an SDC as a random variable ✏
i

added to K
i

. If Ko

i

and Kc

i

are
respectively the noncorrupted and corrupted value of K

i

, then Ko

i

= K
i

, and
Kc

i

= Ko

i

+ ✏
i

.

3.2 Objectives
Replication is a generic solution for detecting all nonsystematic SDCs, but
its overheads in memory and in compilation can not comply with exascale
challenges in storage and in power consumption. New SDC detectors must
have lower memory and/or computational overhead than does replication. For
a numerical integration solver, SDC detection can be interpreted as a func-
tion of (x

n�k

)

k�0

and (f
n�k,i

)

k�0,i

. Minimizing the computational overhead
means computing as few operations as possible than those required by the ODE
method. Minimizing the memory overhead is equivalent to storing as little extra
data as possible.

3.3 Workflow
The numerical integration solvers represent one step in a scientific application.
Figure 4 shows an overview of a typical high-performance computing workflow
composed of a resilient numerical integration solver. The SDC detection is done
at each step. When a step is found to be corrupted, it is recomputed in order
to allow the solver to continue.

With the assumption of nonsystematic SDCs, the step, that is recomputed
after being striked by an SDC, can not be affected by the same SDC. Conse-
quently, the solutions before and after the recomputation differ. Even after the
recomputation a corrupted step, the step might still be corrupted in the unlikely
case of two nonsystematic SDCs in a row.

After a recomputation, if the step is identical to the previous one, then the
step was not corrupted. It means that the detector made a false positive: it
detected an SDC in a noncorrupted step. In order to avoid an infinite loop, the
step is automatically accepted when the solution is the same before and after
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HPC application

Numerical 
integration 

solver

… …

Resilient numerical integration solver

Step n Detection Step 
n+1

Rejected Validated

… …

Figure 4. SDC detector for an HPC application with a numerical integration solver. At the
end of each step, the SDC detector decides whether to validate or reject the step.

the recomputation. In practice, only the norm of the solution at a rejected step
is stored to limit memory overheads.

The false positive rate is defined as the ratio between the number of false
positives (a noncorrupted step that is reported corrupted) and the number of
noncorrupted step, whereas the true positive rate is the ratio between the num-
ber of true positives (a corrupted step that is reported) and the number of
corrupted steps. Because replication computes two times each step, we can
consider that replication has a false positive rate of 100.0%.

3.4 Assumption on the solver
In the absence of SDCs, we assume that the solver works well. This means
that it converges in a limited number of steps and achieves the user’s accuracy
expectations.
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4 SDC Detection in Fixed Solver

An SDC detector was developed for fixed solver. It follows the state-of-the-art
principle of comparing a surrogate function to a threshold function. The step
is rejected as soon as the surrogate function exceeds the threshold function.

State-of-the-art detectors have two limitations that affect the detection per-
formance. Firstly, a detetor relying on extrapolation can not detect significant
SDCs with an impact lower than the approximation error of the extrapolation.
Secondly, their surrogate function is expected to be different from zero, but the
threshold function only provide an upper bound of its value. A significant SDC
that shifts the surrogate function below its expected value is not detected.

The proposed surrogate function is based on the difference between two
estimates of the error. It is not affected by previous limitations, because it does
not rely on the extrapolation, and its expected value is zero.

4.1 The proposed Hot Rod method
More specifically, the surrogate function �

n

is defined by �

n

= A
n

� B
n

with
A and B two estimates of the error. For Cash-Karp’s method, a single-step
integration method, A is the embedded estimate E , and B is Radau’s estimate
R. In the absence of SDC, the surrogate function becomes O(hp+2

):

�

n

=

�
LTE

n

+O(hp+2

)

�
�
�
LTE

n

+O(hp+2

)

�
,

= O(hp+2

).

Two threshold functions were designed: Hot Rod HR (for High Recall) and
Hot Rod LFP (for low false positives). In Hot Rod HR, the surrogate function
is compared with a certain confidence interval centered over zero. When the
surrogate function is outside the confidence interval, an SDC is reported. How-
ever, Hot Rod HR may have a false positive rate of a few percents. In Hot Rod
LFP, a larger confidence interval is considered, in order to keep its false positive
rate below one percent.

4.2 First detector: Hot Rod HR

In regular cases, the surrogate function is one order higher than the LTE. In
presence of an SDC, �

n

exceeds the threshold function. Hence, SDCs whose
introduced errors are even smaller than the LTE are expected to be detected. I
show that all significant SDCs are detected by Hot Rod HR.

4.2.1 Threshold function

Because �

n

= O(hp+2

), one can assume that �

n

acts as a random variable,
with a zero-mean in the absence of SDC. Obtaining an a priori expression of
�

n

is complex. Instead, a statistical evaluation is computed from a training set
T composed of N

s

samples. The samples are composed of the first computed
�

n

. More specifically, the standard deviation of �
n

can be estimated from T
with the unbiased sample standard deviation:

� =

vuut 1

N � 1

NX

n=1

�

2

n

. (8)
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Assuming that (�

n

)

n

follows a normal distribution, the “three sigma rule” [34]
suggests choosing C

n

= 3�. Thus, we expect that 99.7% of uncorrupted (�

n

)

n

fall within the confidence interval, or in other words a false positive rate of
0.3%. The normal distribution is a natural choice for modeling the repartition
of training samples.

4.2.2 Detection of the significant SDC

The SDC is detected when |�c

n

| � C
n

with C
n

the half-length of the threshold
function at step n. It is all the more difficult to detect when �

o

n

= 0. I show
that the threshold function is tight enough to detect all significant SDCs. This
is done by showing that the minimum injected error ✏

min

that can be detected
is of the same order than the approximation error.

As explained in Section 3.3, the corruption affects a function evaluation Ko

i

such that Kc

i

= ✏�Ko

i

, where c (respectively o) denotes corrupted (respectively
uncorrupted) data.

�

c

n

��

o

n

= Ec

n

� Eo

n

� (Rc

n

�Ro

n

) ,

= h✏


ˆb
i

+ b
i

✓
31

30

� 3�
i,1

20

◆�
,

where �
ij

is the Kronecker’s symbol defined by �
ij

= 1 if i = j; otherwise
�
ij

= 0, (b
i

) (respectively (

ˆb
i

)) are the coefficients of the order 4 (respectively
5) in Cash-Karp’s method.

The minimum error ✏
min

that we can detect corresponds to the case |�c

n

�
�

o

n

| = C
n

� 0. We note that B =

ˆb
i

+ b
i

⇣
1

30

� 3�i,1

10

⌘
. This leads to

✏
min

=

C
n

hB
= O

✓
C
n

h

◆
.

When x
n

is corrupted instead of a stage, one can derive that ✏
min

= O(C
n

). If
C
n

has the same order of �
n

, then 1. ✏
min

= O(hp+1

) when an error is injected
inside a stage and 2. ✏

min

= O(hp+2

) when an error is injected inside a result.
In other words, the threshold of detection has the same order as (or better than)
the LTE of Cash-Karp’s method. This guarantees that all significant SDCs are
detected.

4.2.3 A reliable training set

Because items from T are not labeled as trusted or untrusted samples, the
evaluation of � might be corrupted. It thus would jeopardize the confidence
interval and thus the SDC detector. To improve reliability, we weighted each
�

n

with its own value. Equation (8) becomes

⌃ =

NX

n=1

exp (��

2

n

),

� =

vuut 1

(N � 1)⌃

NX

n=1

exp (��

2

n

)�

2

n

.
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4.2.4 Adaptive control

The hypothesis of a normal distribution may be invalidated. We develop thus
a correction of the threshold function based on false positives.

In Section 3.3, we showed that a false positive is reported, when a solution
remains the same after its recomputation. Because of the “three sigma rule,”
the FPR is expected to be 0.3%. If the FPR is an order of magnitude higher, at
3%, for k times, an online learing allows us to increase the threshold function.
The latter is increased with a certain coefficient 1 + ↵ (↵ is a learning rate).
C
n

becomes C
n

= (1 + ↵)k ⇥ 3�, where ↵ fixes the rate of the adaptive control.
Because (1 + ↵)k = 1 + ↵k + O(↵2

), ↵ is taken as 1/(max (FPR) ⇥ N
steps

),
where N

steps

is the number of steps in the application and max (FPR) is the
maximum acceptable false positive rate. Because a false positive requires the
recomputation of a noncorrupted step, we suggest setting max (FPR) at 5% to
limit the computational overhead. In our experiments, we have N

steps

= 1000;
thus ↵ = 0.02.

Thanks to the adaptive control, the training set requires a few step. In
experiments, I have found that N

s

= 5 samples are sufficient to initialize the
threshold function.

4.3 Second detector: Hot Rod LFP

If the cost of a false positive is too high, Hot Rod HR is not suitable. Hence,
we designed a second detector with a larger treshold function. Nonetheless, all
significant SDCs must still be detected.

This new confidence interval is defined by

C
n

= 10C
99

(|�| 2 T ).

C
99

denotes the 99th percentile of the training set. The threshold function
can be interpreted as a bound that is an order of magnitude bigger than the
surrogate functions in the training set. Considering the 99th percentile instead
of the maximum increases the reliability of the training set: a corrupted sample
with a large value that would burst the threshold function, is rejected. Because
this threshold is larger than the previous one, this detection performance is
lower. Because the estimates are at order p = 4 for Cash-Karp’s method, the
LTE at step n can be expressed as LTE

n

= Chp+1

+O(hp+2

). We show that the
GTE at the last step N is still an order p as it used to be without corruption.
We assume the probability that an SDC occurs and is accepted is small enough
to guarantee that at worst only one SDC is accepted. The worst case is when
this SDC is accepted at the first step, n = 1, and when C

n

= �

n

. Hence,
the introduced error is LTE

1

= 10Chp+1

+ O(hp+2

). Because GTE
1

= LTE
1

,
GTE

1

= 10Chp+1

+O(hp+2

).
With x̃(t, x

n

) the notation in Section 2.2.1, x(t) = x̃(t, x
0

), and one can
write that the GTE at a step 0 < n < N

steps

is

|GTE
n+1

| = |x(t
n+1

)� x̃(t
n+1

, x
n

) + x̃(t
n+1

, x
n

)� x
n+1

|,
 |x(t

n+1

)� x̃(t
n+1

)|+ |x
n+1

� x̃(t
n+1

, x
n

)|.

Because f is L-Lipschitz continuous, the Gronwall’s inequality [35] simplifies
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the first term to

|x(t
n+1

)� x̃(t, x
n+1

)| |x̃(t
n

, x
0

)� x̃(t, x
n

)|eLh,

= |GTE
n

|eLh.

The second term, |x
n+1

�x̃(t, x
n+1

)|, is the LTE at step n+1 and so is evaluated
at Chp+1

+O(hp+2

). Denoting � = eLh, we obtain

|GTE
n+1

|
�n

 |GTE
n

|
�n�1

+

Chp+1

�n

,

 ...,

 |GTE
1

|+ Chp+1

nX

i=1

1

�i

.

Because
P

N

i=1

1/�i

= (�N � 1)/�N

(� � 1) and � � 1 � Lh, noting ⌧ = Nh, we
obtain

|GTE
n+1

|  10Chp+1

+

Chp

L

�
eL⌧ � 1

�
+O(hp+2

).

At the last step, GTE
N

= O(hp

) is verified. The order of GTE is unchanged:
the SDC is insignificant.

4.4 Algorithm
Two efficient detectors were presented. They differ in their tradeoffs: Hot Rod
HR has a higher true positive rate and Hot Rod LFP has a lower false positive
rate. We saw that undetected SDCs have no impact on the accuracy of the
ODE method. They require fixing the learning rate ↵, but simple indications
are given. One can thus derive two scenarios. If an SDC is likely to happen
(it could be the case when the processor is not protected from SDC by ECC
memory or other protection system), then Hot Rod HR is employed. Otherwise,
employing Hot Rod HR allows us to detect all significant SDCs with fewer false
positives. The scheme is illustrated in Algorithm 1 for a given detector.

4.5 Experiments and results
We showed theoretically that all significant SDCs are detected with Hot Rod.
In this section, we evaluate the SDC detectors with a meteorology application.

4.5.1 Environment

Experiments were computed on a machine with four Intel Xeon E5620 CPUs
(each with 4 cores and 8 threads), 12 GB RAM, and one NVIDIA Kepler K40
GPU with 12 GB memory. It was programmed in C++11 using CUDA. The
application is particle tracing for streamline flow visualization [10],[36], [37].
Input data are velocity field of the weather provided by WRF. The center of
Earth is the origin of the axis. The solver integrates the velocity field to compute
the streamlines. It stops when the streamline goes outside the velocity field.
Uncorrected streamlines can thus be shorter than they were supposed to be.
The result can be seen in Figure 5.
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while learning do
step  simulation(prev. step) ;
� |A(step, prev.steps)� B(step, prev.steps)| ;
TraininigSet.push(�) ;

end
while new step do

step  simulation(prev. step) ;
� |A(step, prev.steps)� B(step, prev.steps)| ;
if (Detector == Hot Rod HR and �  C

n

) or (Detector == Hot
Rod LFP and �  C

n

) then
report(“no error”) ;
accept step ;

end
else

step  simulation(prev. step) ;
�

0  |A(step, prev.steps)� B(step, prev.steps)| ;
if �

0
= � then

report(“false positive”) ;
if FPR > 3% then

k++ ;
end

end
accept step ;

end
end

Algorithm 1: Pseudocode for the execution of our detectors

Figure 5. Streamlines computed by the application. The color gradient starts in red at seeds;
1,408 streamlines are computed.

4.5.2 Benchmark

I compared these SDC detectors with other detectors presented in Section 2:
replication, AID and BSS14 detectors. The two latter detectors need to be
parametrized. I selected the parameters that provide the best results in the
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application. Using the same notation as in [7], I configured AID with ✓r = 1.
Results were improved if the threshold function is taken as (1 + ↵)k(✏ + ✓r)
with ↵ = 0.2 and k defined in Section 4.2.4. Concerning BSS14, five parameters
should be set, but no indication is detailed in [8] about two of them. With
the notation of [8], the considered values are ⌧

j

= 1e�5, ⌧
v

= 0.02, � = 1.4,
� = 0.95, and p = 10.

4.5.3 Results

Table 2. Benchmark of the detectors Hot Rod (H.R.) LFP and HR, replication, AID and
BSS14. Values in the column “IRE 95%” are the injected relative errors (IRE) that were
detected 95% of the time. Sign. = significant. Comp. = computational.

Detector
TPR (%) FPR

(%) IRE 95%
Overheads (%)

Singlebit Multibit Sign. Comp. Memory
Replication 100.0 100.0 100.0 100.0 0.0 +100 +100

AID 14.3 43.2 86.7 1.6 7e�6 +4.6 +50

BSS14 18.8 49.5 91.2 0.6 4e�6 +3.7 +13

H.R. LFP 23.1 64.6 99.9 0.01 7e�8 +3.8 +50

H.R. HR 28.6 69.6 99.9 1.2 5e�9 +4.4 +50

Table 2 presents results from the benchmark. I did not compare each de-
tector with a solver with no detector. I compared each detector with a perfect
detector that returns the ground truth. For computational overhead, I divided
the execution time of each detector with that of the perfect detector. My detec-
tors have a computational overhead lower than 5%, as do the BSS14 and AID
detectors. It is 20 times less computationally expensive than replication. But
unlike the AID detector, my detectors have to employ an embedded integration
method that computes more stages than does another Runge-Kutta method of
the same order.

My detectors have a higher memory cost than does the BSS14 detector, but
a smaller memory cost than does replication. For estimating memory overheads,
I counted the number of stored vectors, such as solutions (x

n

)

n

, stage slopes
(k

i

)

i

and estimates. Cash-Karp’s method requires computing and storing two
additional stage slopes than does Runge-Kutta 4, but the same number as the
other embedded fourth-order methods. Cash-Karp’s method requires storing 6
(k

i

)

i

(among them f(x
n�1

)), and x
n

; x
n�1

is stored to allow a rollback in case
of SDC detection; when f(x

n�1

) is employed in the Radau estimation, f(x
n

)

can be computed at the position (the result is employed at the next step if
the step is accepted). Thus in total, 8 data elements are stored by the perfect
detector, whereas E (R can use the same storage as E), f(x

n�2

), x
n�2

and x
n�3

are stored for our detectors; AID stores x
n�2

, x
n�3

, x
n�4

, and the extrapolated
solution; and BSS14 stores E .

The true positive rate (TPR) shows that our detectors detect perfectly (at
99.9%) significant SDCs. Replication does as well, but the BSS14 and AID
detectors have a TPR of 91.2% and 86.7% of significant SDCs, respectively. For
BSS14 and AID, some SDCs can thus be undetected while affecting the accuracy
of the solvers. Moreover, the “IRE 95%” measures the smallest injected relative
error that is detected at least 95% of the times. Its value can be interpreted
as the smallest detectable value. It is smaller for our detectors than the mean
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local error estimate (1.5e�6) by a factor of 100. Because all significant SDCs
are detected, SDCs undetected by Hot Rod are sure to have no impact. The
undetected 76.9% of SDCs by Hot Rod LFP are thus insignificant and do not
need to be corrected: correcting these insignificant SDCs would not improve
results and would demand extra computation. Figure 6 shows the LTE of
the solver in the confidence interval in the absence of SDC. It represents the
approximation error. As defined in Section 3, significant SDCs inject errors
that are higher than this error. Because the streamlines of the AID and BSS14
detectors are pushed outside the confidence interval at SDC injections, they do
not detect those SDCs. On the other hand, Hot Rod HR and LFP’s streamlines
are not affected by SDCs: these detectors protected the solver. This result is
consistent with the fact that the IRE 95% of Hot Rod is two orders of magnitudes
less than the approximation error.

600 650 700 750 800

Step

6377060

6377070

6377080

6377090

So
lu

ti
on

(m
)

SDC
BSS14

AID
H.R. HR

H.R. LFP
± LTE

Figure 6. One streamline computed by the different detectors. Singlebit injection is made
every 50 steps. In the window, the position of the bit-flip varies from 31 to 35 in IEEE754
doubleprecision. The interval “±LTE ” represents the approximation error. Significant SDCs
shift the solution outside this interval. In the application, the origin is the center of the Earth.

4.6 Conclusion
This section presented two SDC detectors Hot Rod for fixed solvers. Both
experimental and theoretical results show that all significant SDCs are detected.
Except for replication, no other tested SDC detectors achieve these results.
More specifically, compared with the state-of-the-art SDC detectors, the true
positive rate is improved by 52% for singlebit corruptions; whereas compared
with replication, the computational overhead is reduced by 20 times. Moreover,
users need only to fix the learning rate ↵, as explained in Section 4.1.

My detectors were employed for one of the ODE integration methods. Other
embedded Runge-Kutta methods can be directly employed. Radau’s estimates
have a general expression in the case of adaptive step size; see the work of
Butcher and Johnston [19]. For implicit methods or linear multisteps, Richard-
son’s estimates 3 can also be used. In future work, we plan to investigate
detection in partial differential equation solvers.
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5 SDC Detection in Adaptive Solver

In adaptive solvers, users define their tolerances in the approximation error.
The tolerances are the maximum absolute and relative approximation errors
that users accept. An SDC can thus be qualified of significant, when it shifts
the solution to the point that the approximation error exceeds the tolerances.
A typical workflow of an adaptive solver is illustrated in Figure 7. The adaptive

HPC application Numerical 
integration 

solver
… …

Adaptive solver

Step n Adaptive 
controller Step n+1

!"##$ > 1.0

… …
!"##$ < 1.0

Solution Step size

Figure 7. Scheme of the adaptive controller without our method (left) and with our method
(right).

controller can reject a step. In particular, an SDC can incre ase the approxima-
tion error, and the adaptive controller is supposed to reject SDCs that exceed
the tolerances. However, the approximation error is only estimated, and the
estimate is also corrupted when an SDC strikes the solution. As a consequence,
the corrupted estimate might underevaluate the error, and a significant SDC
might be accepted.

Contrary to fixed solvers, finding two estimates that agree in the absence
of SDCs is a challenge. Instead of using Hot Rod, I suggest a solution that
consists in double-checking the acceptance of a step with a second error estimate.
Because error estimates are difficult to compute in adaptive solvers, an algorithm
based on the number of false positives select the estimation method.

5.1 Simulations
Simulations were done in a use case that solves the problem of a rising warm
bubble in the atmosphere. The governing equations are the three-dimensional
nonhydrostatic unified model of the atmosphere [38], expressed as

@⇢0

@t
+r · (⇢u) = 0,

@⇢u

@t
+r · (⇢u⌦ u) = �rP 0 � ⇢0g,

@⇢✓0

@t
+r · (⇢u✓) = 0, (9)

where ⇢ and P are density and pressure, respectively; u is the flow velocity; g is
the gravitational force vector per unit mass; ✓ is the potential temperature; and
(·)0 denotes the pertubation to that quantity with respect to the hydrostatic
mean value. The initial solution comprises a stationary atmosphere with P =

10

5 N/m2 and ✓ = 300K, with a warm bubble defined as a potential temperature
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Figure 8. Rising thermal bubble: Density pertubation (⇢0) contours at 0 s (initial), 100 s,
150 s, and 200 s (final). Ten contours are plotted between �0.0034 (red) and �0.0004 (blue).
The cross-sectional profile is shown at y = 500m.

perturbation [38],

�✓ =

8
<

:
0 r > r

c

1

2

h
1 + cos

⇣
⇡r

rc

⌘i
r  r

c

, (10)

where r = kx � x

c

k
2

, r
c

= 250m is the radius of the bubble, and x
c

=

[500m, 500m, 260m] is the center of the bubble. The domain is a cube of side
1000m, and no-flux boundary conditions are applied at all boundaries. The
gravitational force g is 9.8m/s2 along the z-axis.

The use case is solved with HyPar. The domain is discretized on equi-spaced
Cartesian grids, and the 5th-order WENO [39] and CRWENO [40] schemes are
used to compute the spatial derivatives. This computation results in an ODE
in time that is solved by using the time integration methods implemented in
PETSc. Figure 8 shows the density perturbation (⇢0) contours for the rising
thermal bubble case at 0 s, 100 s, 150 s, and 200 s, solved on a grid with 64

3

points. The bubble rises as a result buoyancy and deforms as a result of tem-
perature and velocity gradients.

5.2 Resilience of Adaptive Controllers
Resilience to SDCs is one of the challenge to achieve the exascale computing. In
Section 2, we saw that replication mandates an overhead in computation and in
memory higher than +100.0%. Chen et al. [9] remarked that some solvers have
an inherent resilience. In the following, we extend this point to all adaptive
solvers. Experimentally, we observe that the adaptive controller rejects some
steps where the error estimate exceeds a certain threshold due to an SDC.

However, this assumes that the adaptive controller is not corrupted in the
presence of an SDC. This is not verified, because the error estimation used by
the adaptive controller is computed from corrupted results. In Section 5.2.2,
we observe that the error estimate can be shifted under the threshold of the
adaptive controller.

5.2.1 Inherent Resilience

• Not all SDCs have an impact on the results
Numerical integration solvers have an inherent approximation error de-
pending on the integration method and its order p: the GTE is O(hp

).
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When the lowest-order bit is flipped, the impact is insignificant with re-
spect to the approximation error, and this SDC does not affect the accu-
racy of the results. Basically, we called an insignificant SDC any SDC that
does not affect the user’s expectation in accuracy. At the opposite, other
SDCs affect higher-order bits, and then they drastically increase the error,
or they may even cause the solver to diverge. These SDCs are referred to
as significant.
It is difficult to distinguish a significant and insignificant SDCs in the
general case. In our previous work on fixed solvers [33], the user does
not give an explicit expectation in accuracy, and we considered that any
SDC higher than a tenth of the LTE was significant. In the case of an
adaptive solver, the user explicits the maximum acceptable approximation
error with the tolerances Tol

A

and Tol
R

. Each time a step was corrupted,
we measured thus the LTE with and without the corruption. When the
error scaled by the tolerances was drifted above 1.0, the corruption was
considered significant.

• Rejection of corrupted steps
In Section 2, we saw that an error estimate exceeding the tolerances Tol

A

and Tol
R

is rejected, because the approximation error is considered unac-
ceptable for the user.
When an SDC occurs, and the approximation error is shifted outside the
tolerance because of the SDC, the step is naturally rejected. In this case,
the step size is reduced according to equation (6); then the next noncor-
rupted step observes that the error estimate is too small and increases the
step size. Overall, the computation time is just increased during one step,
while the accuracy is preserved.
The corrupted step can be unrejected, if the SDC shifts the approximation
error below the tolerance, or if the SDC is small enough to avoid the
approximation error to exceed the tolerance. Accepting such steps seems
dangerous. One could object that the approximation error can be higher
than it would have been without the SDC; even if the current step is
below the tolerance, it might affect next steps. However, an adaptive
solver is designed in a way that if all steps are below the tolereances, then
the accuracy’s expectation is achieved. Accepting such corrupted steps
might increase the approximation error on next steps, but the accuracy’s
expectation will be achieved. Detecting and correcting such SDCs would
thus be a waste of ressources.
One caveat must be added. The approximation error is only estimated.
In the presence of an SDC, the estimate is also corrupted, and its value
might differ from the real value of the approximation error. This case is
considered in Section 5.2.2.
We injected SDCs in the use case introduced in Section 2. In Table 3, we
disclose the detection performances of the adaptive controller. Detection
performances are based on the false positive rate and the true positive
rate. The false positive rate is defined as the ratio between the number of
non-corrupted steps that are rejected, and the number of non-corrupted
steps. Similarly, the true positive rate is the ratio between the number of
corrupted and rejected steps, and the number of corrupted steps.
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The false positive rate remains below 0.1% for all considered ODE meth-
ods, thanks to ↵, ↵

max

, ↵
min

. At the same time, the true positive rate
is usually below 50%. Singlebit SDCs are the hardest SDCs to detect
(9.3%), whereas the multibit SDCs are the easier (55.1%). This results
come from the fact that singlebit SDCs have usually a lower impact on
the results. The true positive rate is decreasing the number N

k

of the
function evaluations (K

i

)

i

of the ODE methods: for the Dormand-Prince
fifth-order method, N

k

= 7, N
k

= 4 for the Bogacki-Shampine third-order
method, and N

k

= 2 for the Heun-Euler method. No explanation for now
can explain this phenomenon.
The true positive rate can seem low, but only significant SDCs need to
be rejected. Further experiments must thus distinguish significant to in-
significant SDCs to know if the inherent resilience of adaptive solvers is
reliable enough.

Rate Injector Heun-Euler Bogacki-Shampine Dormand-Prince
FP All 0.0 0.0 0.0

TP Scaled 31.1 23.3 20.1

TP Multibit 55.1 46.8 35.3

TP Singlebit 13.2 11.8 9.3

Table 3. Detection accuracy for several ODE methods and several SDC injectors. FP: false
positive. TP: true positive. Results are given in percentage.

5.2.2 Significant SDCs Not Detected

The approximation error is not precisely known but is only estimated. In pres-
ence of a corruption, the estimate is also corrupted. In particular, it may be
shifted below the tolerances of the adaptive controller; in such case, the step
would be accepted. We can give several examples where it can happen.

• In the extreme case, the registers of (K
i

)

i�0

could be erased. In this case,
the corrupted error estimate is equal to zero; consequently the step is
accepted, and the step size is increased by ↵

max

. The solution would the
same than during last step: x

n

= x
n�1

. The approximation error may
then be unacceptable with respect to user’s requirements.

• Because any K
i

depends on other (K
j

)

j 6=i

, the corruption of a certain K
l

corrupts the other (L
j

)

j 6=l

. Such cascading patterns increase the possibil-
ity of underestimating the approximation error.

• The SDCs can affect only the estimate. In this case, the estimate can be
completely decorrelated from the approximation error.

Consequences of accepting a corrupted step can be disastrous. Not only the
corrupted step exceeds the user’s accuracy expectation, but the next steps will
be initialized with a corrupted result. Moreover, the step size might be increased
after the corrupted step, and it might even exceed its stability region; in such
case, the solution may not converge at all.

In our usecase, we observe that this phenomenon can occur with a random
corruption. In Table 4, we disclose the false negative rate of the classic adaptive
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controller. The false negative rate is the ratio between the number accepted but
corrupted steps, and the number of corrupted steps. Because not all SDCs have
an impact on the accuracy of the results, we distinguish the case where a step
is corrupted by any kind of SDC, and steps corrupted by at least one significant
SDCs. In the latter case, the false negative rate is qualified of significant. The
false negative rate with all steps is higher than the significant false negative
rate, because insignificant SDCs can have a too low impact on the results to be
detectable.

While the significant false negative rate with significant steps achieves 13.3%
for Heun-Euler’s method with scaled SDCs, the rate bursts to 50.4% for Dormand-
Prince’s method. This can be explained by the fact the number N

k

of function
evaluations (K

i

)

i

is higher for Dormand-Prince’s method. In this case, more
pattern of SDCs can lead to an underevaluation of the error estimation, and the
probability of a non-detection is thus higher. While the false negative rate with
all steps is higher with singlebit SDCs than with scaled SDCs, the significant
false negative rate is lower with singlebit SDCs than with scaled SDCs. This
is due to the fact that a singlebit SDC becomes significant when one of the
highest-order bit is flipped, and this is easily detectable, whereas a scaled SDC
can be significant while being difficult to detect.

Injection
Heun-Euler Bogacki-Shampine Dormand-Prince
All Sign. All Sign. All Sign.

Singlebit 86.8 5.4 88.2 10.1 90.7 15.0

Multibit 44.9 3.9 53.2 4.5 64.7 7.9

Scaled 68.9 13.3 26.7 36.1 79.9 50.4

Table 4. False negative rate for several ODE methods and several SDC injectors. Sign.
= significant (only steps, that corrupted with at least one significant SDC, are considered).
Results are given in percentage.

5.3 Resilience method for adaptive solvers
We saw that the adaptive solvers are using an estimate to reject or accept
a step. In the presence of SDCs, the adaptive solver can underestimate the
approximation error because the estimator is using corrupted data; in this case,
the adaptive solvers may not reject all significant SDCs. To solve this issue,
I suggest to increase the redundancy of the rejection mechanism, by adding a
second acceptance step. When the adaptive controller accepts a step, I apply
a second rejection mechanism to validate the decision. The new workflow is
illustrated in Figure 9. This idea can easily be interpreted, when I remark that
the rejection mechanism could be underevaluated following its own pattern of
corruptions. By selecting two rejection mechanisms with different patterns, the
risk of the nondetection of a significant SDCs is reduced. I call double-checking
this method.

I explore here two different approaches for computing the double-checking.
Both of them compute first an estimate of the approximation error, and then
compare the estimate to a threshold function. The first approach is inspired
from AID and is presented in Section 5.3.1. The second approach consider an
estimate based on another ODE method, and it is explained in Section 5.3.2.
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Step	n Compress

Storing

Uncompress Step	n+1
……

Figure 9. SDC detector for an HPC application with a numerical integration solver. At the
end of each step, the SDC detector decides whether to validate or reject the step.

5.3.1 Double-checking based on Lagrange interpolating polynomials

The adaptive impact-driven detector (AID) [7] developed by Di and Cappello is
designed to detect SDCs in an iterative, time-stepping methods with a fixed step
size. In particular, it can be employed in the context of numerical integration
solvers. Details on the method are given in Section 2.

First at all, I extended AID for variable step size. This was achieved by re-
placing the extrapolation methods to Lagrange interpolating polynomials (LIP).
I provide formulations for order 0, 1, and 2:
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.

Secondly, I replaced the threshold function to adapt it for an adaptive solver,
in which the user does not give the error bound ✓, but the absolute and relative
tolerances Tol

A

and Tol
B

.
The obtained double-checking is called LIP-based double-checking.

5.3.2 Integration-based double-checking

My second approach consists in computing another rejection mechanism based
on a second error estimate. The second error estimate is computing from a
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different ODE method than the one used in the solver. It must not require extra-
computations, in order to reach a low computational overhead. It must also have
a larger stability area than the ODE method used by the method. Because
implicit methods have usually a larger stability area than explicit methods, the
latter condition can be followed by employing an implicit method for the double-
checking and an explicit method for the solver. The second method computes an
approximated solution x̃

n

. The error estimation is obtained from the difference
x
n

� x̃
n

. It computes actually a local truncation error. I called this method an
integration-based double-checking. The step is rejected when the norm of x

n

�x̃
n

is higher than 1.0.
I suggest to employ a backward differentiation formula (BDF) for the double-

checking, because it uses previously computations, and because it has a large
stability area. I compute the estimates by storing (x

n�k

)

k�0

. One could also use
an Adam-Moulton method: it requires storing f(t

n�k

, x
n�k

) instead, though it
often appears less practical. BDF are multistep and implicit methods. In the
literature, several expressions for a variable step size are given. The following
expressions of x̃1

n

, x̃2

n

, and x̃3

n

for the orders one, two and three are employed:
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BDF methods have expressions until the order 6, but the stability area is
decreasing with the order. At the same time, ODE methods with a small q
requires less computation and less storage of previous solutions (x

n�k

)

k�0

. In
this study, we restrict to the orders 1, 2, and 3, in order to prevent our system
from stability issues and to mitigate the overheads.

By employing previous solutions (x
n�k

)

k.0

and current solution x
n

comput-
ing by the ODE method, BDF requires only the computation of f(x

n

). For most
ODE methods, however, f(x

n

) is used for the next step. In this case, there is
no extracomputation when the step is accepted. Certain ODE methods called
first-same-at-last already compute f(x

n

) at step n, such as Dormand-Prince’s
method.

• Choice of the order
The estimation of the approximation error is using solutions computed
at the order p. Thus, the error estimate does not exceed an accuracy
higher than O(hp+1

), even if the second ODE method is expressed at an
higher order q > p. However, x̃

n

tends to be more similar to x
n

with
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an higher value of q. Consequently, the higher q is, the smaller the error
estimate tends to be. It makes the detection less sensitive: the second
error estimate is less likely higher than 1.0, and less steps tend to be
rejected. This also means that the number of false positives decrease: less
non-corrupted steps are rejected.
Because we want to improve the detection while maintaining a low false
positive rate, we propose to adapt the order of the ODE method. When
the false positive rate is higher than � for an order q, a formula with one
higher order q0  q

max

is considered. On the contrary, when the FPR is
lower than �, the order of the ODE method is decreased to q0 = q�1 � 1.
� can be chosen as the maximum false positive rate we can accept. �
should be lower but in the same of order of magnitude than �. In our
experiments, we took � = 0.05, � = 0.1, and q

max

= 3. This procedure
is explained in Section 2. The selection of the order is every c

max

= 10

times or when the detector made a false positive.

• Implementation
The implementation was directly done inside the adaptive controller. This
allows to reuse some allocation in memory to compute the second estimate.
Thereafter, we refer the adaptive controller without double-check mecha-
nism as classic adaptive controller. Because x

n�1

is already stored by the
classic adaptive controller, the double-checking only requires the storage
of x

n�2

and x
n�3

. The implementation is illustrated in Section 10.

Classic adaptive
controller

Without our method New adaptive controller

Classic 
adaptive

controller

BDF-
based 
double
-check

Validation Step size

Figure 10. Scheme of the adaptive controller without our method (left) and with our method
(right). The SDC detector can reject a step but does not change the step size.

5.4 Experiments
In Section 5.2, we saw that the rejection mechanism of an adaptive solver is able
to correct only a part of the SDCs. Some SDCs, though significant, remained in
the solution, because the rejection mechanism was corrupted and did not detect
any outlier. Then, I proposed a method that enhance the rejection mechanism
by double-checking the acceptance of a step in Section 4.1.

In this section, we experimentally validate our method with the use case
introduced in Section 5.1. First, we show that our method reduces significantly
the risk of accepting a significant SDC. Secondly, we measure the overheads
and the scalability of our double-checkings, in order to compare them with
replication and to suggest some improvements.

Numerical experiments use HyPar [41], a high-order, conservative finite-
difference solver for hyperbolic-parabolic PDEs. It also uses the time integra-
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Data: (x
n�k

)

k�0

, f(x
n

), q,N
steps

Result: Rejection or validation of step n
rejected = True;
SErr

1

= Estimating
1

((x
n�k

)

k�0

, f(x
n

));
// Eq. (3)
if c++ == c

max

then
/* Update ODE method’s order q */
c
max

= 0;
if FP

q

/N
steps

< � then
q = max (1, q � 1)

else if FP
q

/N
steps

> � then
q = min (q

max

, q + 1)

end
if SErr

1

== lastSErr then
/* Case of a false positive */
validation = True;
FP

q

++;
c = c

max

else
bool validation = SErr < 1.0;
if validation then

SErr
2

= Estimating
2

((x
n�k

)

k�0

, f(x
n

), q);
validation = SErr

2

< 1.0;
lastSErr = SErr

1

;
end

end
if validation then

n++;
rejected = False;
h = NewStepSize(Serr

1

, h);
// Eq. (7)

end
Algorithm 2: Adaptive-controller with integration-based double-checking

tors (ODE solvers) implemented in PETSc [42, 43, 44], a portable and scalable
toolkit for scientific applications. HyPar and PETSc are written in C and use
the MPICH library on distributed computing platforms.

5.4.1 Cluster

The first case was computed on the cluster Blues at Argonne National Labora-
tory. The cluster is composed of 310 compute nodes, 64 GB of memory on each
node, 16 cores per compute node with the microarchitecture Intel Sandy Bridge
and a theoretical peak performance of 107.8 TFlops. PETSc was configured
with MVAPICH2-1.9.5, shared libraries, 64 bit ints, and O3 flag.
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FPR TPR Significant FNR
Classic 0.0 31.1 13.3

LBDC 2.3 33.1 4.1

IBDC 4.2 41.9 1.1

Replication 100.0 100.0 0.0

Table 5. Our double-checking based on Lagrange interpolation polynomials (LBDC) and
on a numerical integration method (IDBC) are compared with the expensive state-of-the-art
replication, and the classic adaptive controller without our enhancement (Classic). FPR =
false positive rate. TPR = true positive rate. FNR = false negative rate.

5.4.2 Detection accuracy

We applied the integration-based double-checking and the LIP-based double-
checking to the Heun-Euler method. Table 5 compares their detection perfor-
mances with replication, and the classic adaptive controller. Details on rates
are given in Section 5.2. We consider that replication has a false positive rate
of 100%, because all steps are recomputed, at least once.

LIP-based double-checking reduces the rate of significant false negatives with
a factor of 3, whereas integration-based double-checking decreases the rate with
a factor of 10. This difference of accuracy results from the fact that the error
estimate used by integration-based double-checking is more precise than the
one used by the LIP-based double-checking. One might suggest to tighten the
threshold function of the LIP-based double-checking in order to improve the
detection accuracy. This sounds reasonable, because tightening the threshold
function increases the false positive rate, and the false positive rate of the LIP-
based double-checking is lower than the false positive rate of the integration-
based double-checking. Furthermore, the threshold function can initially by
tightening with the parameter ✓. However, results would hardly change. In-
deed, at the beginning of the simulation, the LIP-based double-checking does
many false positives, until ⌘, the number of false positives enlarges enough the
threshold function.

5.4.3 Overheads

Overheads in memory (%) computation (%)
Classic +0.0 +0.0

LBDC +57.6 +2.4

IBDC +42.7 +4.5

Replication +100 +100

Table 6. Benchmark of overheads between our double-checking based on Lagrange interpo-
lation polynomials (LBDC) and on a numerical integration method (IDBC), replication, and
the classic adaptive controller (Classic).

In Table 6, we compare the overheads in memory and in computation of the
classic adaptive controller, our methods, and replication. When a corrupted step
is detected by replication, the step is recomputed. The computational overhead
of replication is exactly +100% plus the rate of corrected steps, but the rate of
corrected steps is below 1%, and thus the overhead is equal to +100.
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The computational overhead is partly due to the cost of the double-checking
and to false positives, as false positives require to recompute a noncorrupted
step. For the integration-based double-checking, the false positive rate is 4.2%,
while the computational overhead is +4.5%. Therefore, the computational cost
of our method is mainly due to the cost of recomputing a false positive. To a
certain extent, the computational overhead can be reduced by decreasing the
parameters � and �, though this would also decrease the detection accuracy.
The memory overhead can appear important, but is in average two times lower
than the memory overhead of replication. It decreases with the complexity of
the ODE method of the solver: in general, the solver requires N

k

+2 vectors of
data with N

k

the number of function evaluations, whereas the double-checking
requires a fix number of vectors.

A variant of AID has been proposed by Subasi et al. [45] using support
vector. It allows to reduce the memory overhead of AID. Such method could be
employed also in the double-checkings to mitigate their memory overheads.

5.4.4 Scalability

Cores
512 4096

Class. LBDC IBDC Class. LBDC IBDC
Double-check - 3.8e2 3.9e2 � 1.5e1 1.6e1

Step 1.2e3 1.3e3 1.3e3 4.6e2 4.8e2 4.8e2

Table 7. Details of the mean execution time computation for the classic adaptive controller
(Class.), LIP-based double-checking (LBDC), and integration-based double-checking (IBDC).
Results are given in seconds.

Table 7 discloses the mean execution time computation for the double-
checkings and the classic adaptive controller. The computational overheads
remain below 5%. If the double-checkings suffer from an limited efficiency, it
has the same efficiency than for the step. This is mainly due to the collec-
tive operation for computating the norms. Moreover, the table shows also that
the double-checking is almost a pure additional cost to the classic adaptive
controller. A better implementation must instead integrate better the double-
checking inside the adaptive controller. This could be done by computing the
norm of the error estimates used by the classic adaptive controller and the
double-checkings at the same time. However, this requires also to allocate an
additional vector, and then to increase the memory ovehreads.

Figure 11 show the relative performance in time (yellow) and memory (green)
compared to the classical adaptive controller of the LIP-based double-checking
(square) and the integration-based double-checking (circle) until 4096 cores.
The overheads tend to decrease with the number of cores, because the SDC
detectors provide a better scalability than the rest of HyPar. Indeed, with the
number of cores decreasing, parts of HyPar that can not be parallelized becomes
more and more important with respect to the cost of the double-checkings.

5.5 Conclusion
The section showed that cascading patterns are likely to corrupt an SDC detec-
tor. Consequences are worrying: a significant SDC can be accepted and the step
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Figure 11. Relative performance in time and in memory of LIP-based double-checking
(LPDC) and integration-based double-checking (IBDC) compared to the classic adaptive con-
troller until 4096 cores.

size might be increased where it should be decreased. Proposed solution is based
on redundancy: because the SDC detector is lightweight, a double-checking is
achievable at a low computational cost.

We showed that the double-checking estimate and the estimate from the
classic adaptive controller should agree. But dynamics of adaptive solvers are
complex: the double-checking estimate must keep pace with the dynamics con-
trolled by the first estimate. It appeared that extrapolation is not fitted for
SDC detection on adaptive solvers: its evaluation is over-evaluated, and it does
many false positives (44.8%). Using backward differentation formula appears to
be efficient when the order of the estimate is controlled to provide a trade-off
between the number of false positives and the number of true positives.

Guhur ARPE 2015-2016 37 of 43



Error Estimation for Fault Tolerance 15 juillet 2016

6 Conclusion

In this report, we saw that numerical integration solvers are sensitive to cor-
ruptions. Improving their resilience is a requirement for the exascale computing
and next generation of supercomputers. We made a distinction between solvers
with a fixed integration step size and those with a variable integration step size.
Replication is an efficient solution, but its memory and computational over-
heads can be prohibitive. Consequently, solutions with a lower cost but similar
detection performance were presented.

For fixed solvers, users’ accuracy expectation is implicit. Error estimations
can approximate the expectation. Furthermore, checking that two different
error estimates agree can detect all significant SDCs. We provided mathemat-
ically proofs and we performed experiments in a high-performance computing
application.

For adaptive solvers, the expectation is given in the tolerances of the adaptive
controller. If this controller can reject some SDCs, it is not reliable enough to
reject all significant SDCs. We suggest to combine it with a double-check mech-
anism based on a second estimate. Experiments were performed with PETSc, a
scalable toolkit for differential equations. It shows that the ratio of non-detected
significant SDCs is reduced by a factor of 10.

In both cases, I compared the methods with state-of-the-art SDC detectors.
We showed that solutions based on extrapolation can not detect significant
SDCs, because the accuracy of extrapolation is lower than the accuracy of the
solver. My methods have performed similarly than replication, but with a com-
putation cost around 20 times lower and a memory cost 2 times lower.

This work considered only the case of nonsystematic SDCs. Recomputing a
step was enough for correcting an SDC. Future works will consider the case of
systematic SDC. It can be achieved by correcting an SDC with another ODE
method. In this case, the systematic SDC might not be triggered during the
correction.

Moreover, proposed SDC detectors have a large memory overhead, although
it is still lower than replication. Improvements should consider solutions to
decrease it. Because of inherent approximation error of a solver, storing the en-
tire solutions are not required. Instead, compression methods or dimensionality
reduction methods may be employed.
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8 Appendix

I lead three papers on this work:

• Lightweight and Accurate Silent Data Corruption Detection in Ordinary
Differential Equation Solvers. Guhur, P. L., Zhang, H., Peterka, T., Con-
stantinescu, E., & Cappello, F. In Euro-Par 2016. mcs.anl.gov/papers/
P5582-0316.pdf

• Detection of Silent Data Corruption in Adaptive Numerical Integration
Solvers. Guhur, P.L., Constantinescu, E., Ghosh, D., Peterka, T., & Cap-
pello, F.

• Controlling lossy compression from error estimates in numerical integra-
tion solvers. Guhur, P.L., Calhoun, J., Constantinescu, E., Peterka, T.,
& Cappello, F.

This work has also been presented during several talks:

• a plenary session at CoDA 2016 by Franck Cappello, entitled Improving the
Trust in Results of Numerical Simulations and Scientific Data Analytics;

• an one-hour seminar entitled Error Estimation for Fault Tolerance in Nu-
merical Integration Solvers at Argonne National Laboratory;

• the lightning talk at JLESC 5th Workshop, entitled Detecting Silent Data
Corruptions with Error Estimations in Numerical Integration Solvers.
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